Home
Class 12
MATHS
int(1)^e x^2 ln(x) dx...

`int_(1)^e x^2 ln(x) dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(1)^(e) log (x) dx=

int_(1)^(e )x^(x)dx+ int_(1)^(e )x^(x)log x dx=

The value of int_(1)^(e)(1+x^(2)ln x)/(x+x^(2)ln x)*dx is :

Evaluate :int_(1)^(e)(log x)/(x)dx

int_(1)^(e^(2))(ln x)/(sqrt(x))dx=

int_(1)^(e^(2))(dx)/(x(1+log x)^(2))=

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx

int_(e )^(e^(2))log x dx =

If I _(1) = int _(e) ^(e ^(2)) (dx )/( ln x ) and I _(2) = int _(1) ^(2) (e ^(x))/(x) dx, then

If the value of the integral int_(1)^(2)e^(x^(2))dx is alpha, then the value of int_(e)^(e^(4))sqrt(ln x)dx is: