Home
Class 11
MATHS
lim(n rarr oo)(1+2+3+...+n)/(n^(2)+1)is ...

`lim_(n rarr oo)(1+2+3+...+n)/(n^(2)+1)`is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)2^(1/n)

80.The value of Lt_(n rarr oo)n^((1)/(n)) is equal to :

f(n) = cot^2 (pi/n) + cot^2\ (2 pi)/n +...............+ cot^2\ ((n-1) pi)/n, ( n>1, n in N) then lim_(n rarr oo) f(n)/n^2 is equal to (A) 1/2 (B) 1/3 (C) 2/3 (D) 1

If alpha and beta are the roots of the equation 375 x^(2) - 25x - 2 = 0 , then lim_(n rarr oo) Sigma_(r = 1)^n alpha^(r) + lim_(n rarr oo) Sigma_(r = 1)^n beta^(r) is equal to :

lim_(xrarr oo) (4^(1//n)-1)/(3^(1//n)-1) is equal to

lim_(n rarr oo)3^(1/n) equals

lim_(n rarr oo)((1+1/(n^(2)+cos n))^(n^(2)+n) equals

lim_(n rarr oo)(3+sqrt(n))/(sqrt(n))

lim_(n to oo)(1-2n^(2))/(5n^(2)-n+100)=

lim_(n rarr oo)(2^(n+1)+3^(n+1))/(2^n+3^n) equals (A)2 (B)3 (C)5 (D)0