Home
Class 12
MATHS
Let P be the plane passing through the p...

Let `P` be the plane passing through the point `(1,2,-1)` and perpendicular to the line of intersection of the planes `2x+z=3` and `3y+2z=5` then equation of plane `P` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

Let P be the plane passing through the point (0,1,–1) and perpendicular to the line of intersection of the planes 2x+z=3 and 3y+2z=5 . If plane P intersects x -axis, y -axis, z -axis, at points A,B,C respectively then area of triangle ABC equals

Lying in the plane x+y+z=6 is a line L passing through (1, 2, 3) and perpendicular to the line of intersection of planes x+y+z=6 and 2x-y+z=4 , then the equation of L is

Find the equation of the plane passing through the point (-1,3,2) and perpendicular to each of the planes x+2y+3z=5 and 3x+3y+z=0

Find the equation of the plane passing through the point (-1,3,2) and perpendicular to each of the planes x+2y+3z=5 and 3x+3y+z=0

Find the equation of the plane passing through the point (-1,3,2) and perpendicular to each of the planes x+2y+3z=5 and 3x+3y+z=0

Find the equation of the plane passing through the point (1,3,2) and perpendicular to each of the planes: x+2y+3z=5 and 3x+3y+z=0

The line passing through the point -1, 2, 3 and perpendicular to the plane x - 2y + 3z + 5 = 0 will be

Equation of the plane passing through the point (1,1,1) and perpendicular to each of the planes x+2y+3z=7 and 2x-3y+4z=0 l is

(i) Find the equation of the plane passing through (1,-1,2) and perpendicular to the planes : 2 x + 3y - 2z = 5 , x + 2y - 3z = 8 . (ii) find the equation of the plane passing through the point (1,1,-1) and perpendicular to each of the planes : x + 2y + 3z - 7 = 0 and 2x - 3y + 4z = 0 . (iii) Find the equation of the plane passing through the point (-1,-1,2) and perpendicular to the planes : 3x + 2y - 3z = 1 and 5x - 4y + z = 5.

Equation of a line passing through (-1,2,-3) and perpendicular to the plane 2x+3y+z+5=0 is