Home
Class 7
MATHS
(2+sqrt3)/(2-sqrt3)+(2-sqrt3)/(2+sqrt3)+...

`(2+sqrt3)/(2-sqrt3)+(2-sqrt3)/(2+sqrt3)+(sqrt3-1)/(sqrt3+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt(3) = 1.73 find the value of : (2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)-1)/(sqrt(3)+1)-(sqrt(3)+1)/(sqrt(3)-1) .

Rationalize the denominator: (2 + sqrt 3)/(2 - sqrt 3) + (2 - sqrt 3)/(2 + sqrt 3) + (sqrt 3 - 1)/(sqrt 3 + 1)

The value of log_((9)/(4))((1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3)))))...oo) is

1/(sqrt3 + sqrt2) + 1/(sqrt3 -sqrt2)=

Simplify: (i) (3sqrt(2)-2sqrt(2))/(3sqrt(2)+\ 2sqrt(3))+(sqrt(12))/(sqrt(3)-\ sqrt(2)) (ii) (sqrt(5)+\ sqrt(3))/(sqrt(5)-\ sqrt(3))+(sqrt(5)-\ sqrt(3))/(sqrt(5)+\ sqrt(3))

Integrate: (a) (3)/(2)sqrt3 (b) (3)/(2sqrtx) (c ) sqrtx+(1)/(sqrtx)

Simplify (7sqrt3)/(sqrt10+sqrt3)-(2sqrt5)/(sqrt6+sqrt5)-(3sqrt2)/(sqrt15+3sqrt2)

Find (sqrt3 - sqrt 2)/(sqrt 3+sqrt 2) -(sqrt3 + sqrt 2)/(sqrt 3-sqrt 2) +1/(sqrt2+1)-1/(sqrt2-1)

(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))-(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))+(1)/(sqrt(2)+1)-(1)/(sqrt(2)-1)

Prove that tan 7 (1^(@))/(2) = sqrt2 - sqrt3 -sqrt4 + sqrt6 = (sqrt3 - sqrt2) (sqrt2 -1).