Home
Class 12
MATHS
|[sqrt 6, sqrt 5],[sqrt 20, sqrt 24]|...

`|[sqrt 6, sqrt 5],[sqrt 20, sqrt 24]|`

Promotional Banner

Similar Questions

Explore conceptually related problems

2sqrt5 - sqrt5 = sqrt5

Simplify: (sqrt 3 - sqrt 5)(sqrt 5+ sqrt 3)

The smallest angle of the triangle whose sides are 6 + sqrt(12) , sqrt(48), sqrt(24) is

Find (sqrt 3 - sqrt 5)(sqrt 5+ sqrt3)

Rationalize the denominator 1/(sqrt 3 - sqrt 2) - 2/(sqrt 5 - sqrt 3) + 3/(sqrt 5 - sqrt 2)

A hyperbola is given with its vertices at (-2,0) and (2,0) one of the foci of hyperbola is (3,0) . Then which of the following points does not lie on hyperbola (A) (sqrt24,5) (B) (sqrt44, 5sqrt2) (C) (sqrt44, -5sqrt2) (D) (-6, 5sqrt2)

Simplify : (\sqrt 5 - \sqrt 3)/(\sqrt 3 + \sqrt 5) \times (\sqrt 5 - \sqrt 3)/(\sqrt 3 -\sqrt 5)

Find the value of the "determinant" |{:(sqrt13+sqrt3,2sqrt5,sqrt5),(sqrt26+sqrt15,5,sqrt10),(sqrt65+3,sqrt15,5):}|

The value of |{:(sqrt(13 )+ sqrt(3), 2sqrt(5),sqrt(5)),(sqrt(15) + sqrt(26),5,sqrt(10)),(3 + sqrt(65), sqrt(15),5):}|

Find the value of determinant |[sqrt((13))+sqrt(3),2sqrt(5),sqrt(5)],[sqrt((15))+sqrt((26)),5,sqrt((10))],[3+sqrt((65)),sqrt((15)),5]|