Home
Class 11
MATHS
underset(x→∞)lim(5^(x)-3^(x))/(2^(x)-5^(...

`underset(x→∞)lim(5^(x)-3^(x))/(2^(x)-5^(x))` =....
(A)2/5
(B)1
(C)-1
(D) 3/5

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr oo)(3^(x+1)-5^(x+1))/(3^(x)-5^(x))=5

lim_(x rarr oo) (2*3^(x-1)-3*5^(x+1))/(2*3^(x)+3*5^(x))

lim_(x rarr0)((1+x)^(5)-1)/(3x+5x^(2))

Find the limits : (a) underset(x to oo)lim ((2x^(2)+3)/(2x^(2)+5))^(8x^(2)+3) (b) underset(x to 0)lim ((1+tan x)/(1+tan x))^(1//sin x) (c ) underset(x to 1)lim (1+sin pi x)^(cot pi x) (d) underset(x to a)lim ((sin x)/(sin a))^(1//(x-a)) (a ne kpi," with k integer")

lim_(x rarr oo)(cos((2)/(x))-cos((3)/(x))*cos((5)/(x)))/(sin((3)/(x))*sin((5)/(x))) is (A) 2/3 (B) -2/5 (C) 5/4 (D) 1

lim_(x rarr1)((x^(4)-3x^(2)+2)/(x^(3)-5x^(2)+3x+1))

lim_(x rarr1)(x^(4)-3x^(2)+2)/(x^(3)-5x^(2)+3x+1)

If (3^(2x-8))/(225)=(5^(3))/(5^(x)), then x=2( b) 3(c)5(d)4