Home
Class 11
MATHS
underset(n→∞)lim(2.3^(n+1)-3.5^(n+1))/(5...

`underset(n→∞)lim(2.3^(n+1)-3.5^(n+1))/(5.3^(n)-4.5^(n))` =

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(nrarroo) (3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=

Lim_(n rarr oo)(3.3^(n+1)+4.5^(n+1))/(5.3^(n)+7.5^(n))=

lim_ (n rarr oo) (2.3 ^ (n + 1) -3.5 ^ (n + 1)) / (2.3 ^ (n) + 3.5 ^ (n)) =

lim_ (n rarr oo) (7.3 ^ (n + 1) + 3.5 ^ (n + 1)) / (5.3 ^ (n) -9.5 ^ (n))

lim_ (n rarr oo) (2.5 ^ (n + 1) -3.7 ^ (n + 1)) / (2.5 ^ (n) + 3.7 ^ (n)) =

lim_(n rarr oo)(5^((1)/(n))+3^(1/n)-1)^(n)

Simplify the following: (3^(n)x9^(n+1))/(3^(n-1)x9^(n-1)) (ii) (5x25^(n+1)-25x5^(2n))/(5x5^(2n+3)-(25)^(n+1))

Find underset(n to oo)lim ((2n^(3))/(2n^(2)+3)+(1-5n^(2))/(5n+1))

Value of underset(ntoinfty)(lim)((n+1)^(1//3)+(n+2)^(1//3)+…+(2n)^(1//3))/(n^(4//3)) is equal to

lim_ (n rarr oo) (5.2 ^ (n + 1) + 2.3 ^ (n + 1)) / (3.2 ^ (n) -7.3 ^ (n))