Home
Class 11
MATHS
If A^2 + A =I, then A^-1 is...

If `A^2 + A =I`, then `A^-1` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If A^(2)-A+I=O , then A^(-1) is equal to

If A ^2 −A+I=0 then A^(−1 ) =

A square non-singular matrix A satisfies A^2-A+2I=0," then "A^(-1) =

If A=[[(-1+isqrt(3))/(2i),(-1-isqrt(3))/(2i)],[(1+isqrt(3))/(2i),(1-isqrt(3))/(2i)]] , i = sqrt(-1) and f (x) = x^(2) + 2, then f(A) equals to

If a^2 + (1)/( a^2 ) = 2 , find : (i) a+ (1)/( a)

If a=1+i , then a^2 equals A. 1-i B. 2i C. (1+i)(1-i) D. (i-1)

if z = (sqrt 3 ) /(2) + (i)/(2) ( i=sqrt ( -1) ) , then ( 1 + iz + z^5 + iz^8)^9 is equal to:

if z_(1) = 3i and z_(2) =1 + 2i , then find z_(1)z_(2) -z_(1)

If a+ (1)/(a) = 2 , find : (i) a^(2) + (1)/( a^2)

If one of the cube roots of 1 be omega , then |(1,1+omega^2,omega^2),(1-i,-1,omega^2-1),(-i,-1+omega,-1)| (A) omega (B) i (C) 1 (D) 0