Home
Class 12
MATHS
xy(dy/dx) = ((1+y^2)/(1+x^2))...

`xy(dy/dx)`` = ((1+y^2)/(1+x^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the differential equation xy(dy)/(dx)=((1+y^(2))(1+x+x^(2)))/(1+x^(2)) is:

The solution of the differential equation xy(dy)/(dx)=(1+y^(2))(1+x+x^(2))/(1+x^(2))

(dy)/(dx) = (2xy)/(x^(2)-1-2y)

(dy)/(dx)=(x^(2)-y^(2))/(xy)

if y=x^(2)+(1)/(x^(2)+(1)/(x^(2)+............)) then prove that (dy)/(dx)=(2xy^(2))/(1+y^(2))

(dy)/(dx)=(y^(2)-x)/(xy+y)

(a) dy/dx = (xy)/(x^2+y^2)

(dy)/(dx) + (xy)/(1-x^(2))=xsqrt(y)