Home
Class 12
MATHS
Solve: (d^(2)y)/(dx^(2))-2(dy)/(dx)+y=e^...

Solve:
`(d^(2)y)/(dx^(2))-2(dy)/(dx)+y=e^(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(d^(2)y)/(dx^(2))+(dy)/(dx)+y=(1-e^(x))^(2)

Solve (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If y=e^(x)(sin x+cos x), prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)=2y=0

If y=e^(x)(sin x+cos x) prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0

If y=e^(x)(sin x+cos x) prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0

If y= x^(2) e^(x) ,then ( d^(2)y)/(dx^(2)) -(dy)/(dx) =

If y=e^(ax)sinbx, then (d^(2)y)/(dx^(2))-2a(dy)/(dx)+a^(2)y=

If y= 3e^(2x)+ 2e^(3x) ,then (d^(2)y)/(dx^(2))-5(dy)/(dx) =

If y=e^(x)sinx, prove that (D^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 .

If y=x^(2)e^(x),"show that "(d^(2)y)/(dx^(2))-(dy)/(dx)-2(x+1)e^(x)=0