Home
Class 10
MATHS
If the zeros of a quadratic polynomial i...

If the zeros of a quadratic polynomial is `ax^2+bx+c` are `alpha` and `beta` then the value of `alpha+beta` is
`(a) b/a`
`(b) b/c`
`(c) -b/a`
`(d) -a/c`

Promotional Banner

Similar Questions

Explore conceptually related problems

20:t If a and B are the zeroes of the quadratie polynomial ax^2+ bx+ c, find the value of 1/alpha+1/beta

If alpha and beta are the zeros of the quadratic polynomial f(x)=ax^(2)+bx+c, then evaluate: alpha^(4)beta^(4)

If alpha and beta be the zeroes of the polynomial ax^(2)+bx+c , then the value of (1)/(alpha)+(1)/(beta) is

If alpha,beta be two zeroes of the quadratic polynomial ax^(2)+bx-c=0 ,then find the value of (alpha^(2))/(beta)+(beta^(2))/(alpha)

If alpha,beta be two zeroes of the quadratic polynomial ax^(2)+bx-c=0 then find the value of (alpha^(2))/(beta)+(beta^(2))/(alpha)

If alpha and beta be the zeroes of the polynomial ax^(2)+bx+c , then the value of (1)/(alpha^(2))+(1)/(beta^(2)) is

If alpha and beta be the zeros of the polynomial ax^(2)+bx+c, then the value of sqrt((alpha)/(beta))+sqrt((beta)/(alpha))

If alpha and beta are the roots of equation ax^2 + bx + c = 0, then the value of alpha/beta + beta/alpha is

if alpha and beta are the zeros of the quadratic polynomial f(x)=ax^(2)+bx+chen evaluate (1)/(alpha)+(1)/(beta)-2 alpha beta