Home
Class 10
MATHS
(sqrt3 + sqrt2)/(sqrt3 - sqrt2) = a+bsqr...

`(sqrt3 + sqrt2)/(sqrt3 - sqrt2) = a+bsqrt5`
value of a and b is

Promotional Banner

Similar Questions

Explore conceptually related problems

1/(sqrt3 + sqrt2) + 1/(sqrt3 -sqrt2)=

(3)/(sqrt3-sqrt2) = asqrt3-bsqrt2 find a and b.

(sqrt5 - sqrt3)/(sqrt5 + sqrt3) is equal to :

If (3 + sqrt7)/(3 - sqrt7) = a + bsqrt7 , then ( a , b ) =

Solve: (sqrt 3+ sqrt2)(sqrt2-sqrt3)

Find : (sqrt5+sqrt2)(sqrt3+sqrt2)

solve (3sqrt5 +sqrt3)/(sqrt5 -sqrt3)

If x= ( sqrt5- sqrt3)/ ( sqrt5+ sqrt3) and y= ( sqrt5+ sqrt3)/( sqrt5- sqrt3) find the value of x^(2) + y ^(2)

If x=(sqrt3+sqrt2)/(sqrt3-sqrt2)andy=(sqrt3-sqrt2)/(sqrt3+sqrt2) then find the value of x^(2)+y^(2) ?

(i) If x = (6ab)/(a + b) , find the value of : (x + 3a)/(x - 3a) + (x + 3b)/(x - 3b) . (ii) a = (4sqrt(6))/(sqrt(2) + sqrt(3)) , find the value of : (a + 2sqrt(2))/(a - 2sqrt(2)) + (a + 2sqrt(3))/(a - 2sqrt(3)) .