Home
Class 11
MATHS
The value of (iota^2+1) (iota^2+2) (iota...

The value of `(iota^2+1) (iota^2+2) (iota^2+3) .............(iota^2+n)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The conjugate of (3-2iota)(2+3iota) is

find the value of iota^6+iota^7+iota^8+iota^9=

The value of lim_(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+......+n^3) is equal to

The value of (2^(n+4)-2*2^(n))/(2.2^(n+3))+2^(-3)

Find the value of 1 xx 1!+2 xx 2!+3 xx 3!+........+n xx n!

The value of ("lim")_(n->oo)[(n+1)^2 3-(n-1)^2 3] is_____

The value of lim_(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+..........+(n^(2))/(n^(3)+n^(3))) is :

The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omega^2)+.+(n-1)(n-omega)(n-omega^2), where omega is an imaginary cube root of unity, is………

The value of lim_(xtooo) {(1)/(3)+(2)/(21)+(3)/(91)+...+(n)/(n^4+n^2+1)} , is

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))