Home
Class 10
MATHS
Find g(n) : g(n) = ( n - sqrt2 ) ( n...

Find g(n) :

g(n) = `( n - sqrt2 ) ( n + sqrt2 )`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (n rarr oo) sum_ (n = 1) ^ (n) (sqrt (n)) / (sqrt (r) (3sqrt (r) + 4sqrt (n)) ^ (2))

lim_ (n rarr oo n rarr oo n pto n terms) (n) / ((n + 1) sqrt (2n + 1)) + (n) / ((n + 2) sqrt (2 (2n + 2)) ) + (n) / ((n + 3) sqrt (3 (2n + 3)) + dots)

lim_ (n rarr oo) (3) / (n) [1 + sqrt ((n) / (n + 3)) + sqrt ((n) / (n + 6)) + sqrt ((n) / (n +9)) + ...... + sqrt ((n) / (n + 3 (n-1)))

Find underset( n rarr oo) ("lim") (sqrt( n^(2) + 1)+ sqrt( n ) )/( sqrt( n ^(2) + 1)- sqrt( n ) )

lim_ (n rarr oo) ((sqrt (n ^ (2) + n) -1) / (n)) ^ (2sqrt (n ^ (2) + n) -1)

lim _(x to oo) (1)/(n ^(3))(sqrt(n ^(2)+1)+2 sqrt(n ^(2) +2 ^(2))+ .... + n sqrt((n ^(2) + n ^(2)))=:

If the major axis is n times the minor axis of the ellipse,then eccentricity is 1) (sqrt(n-1))/(n) 2) (sqrt(n-1))/(n^(2)) 3) (sqrt(n^(2)-1))/(n^(2)) 4) (sqrt(n^(2)-1))/(n)