Home
Class 11
PHYSICS
A quantity X is measured as X=(A^(3)B^(2...

A quantity `X` is measured as `X=(A^(3)B^(2))/(C^(2/3)D^(2))`.The maximum percentage error in `A,B,C `and` D` are `1%,3%,2% and 4%`.Out of `A,B,C and D`,which quantity contributes maximum in permissible error of quantity X?

Promotional Banner

Similar Questions

Explore conceptually related problems

A physical quantity y is given by y=(P^2Q^(3//2))/(R^4S^(1//2)) The percentage error in P,Q ,R and S are 1%,2%, 4% and 2% respectively. Find the percentage error in y.

A physical quantity A is dependent on other four physical quantities p,q,r and s as given by A=(sqrt(pq))/(r^(2)s^(3)) . The percentage error of measurement in p,q,r and s are 1%,3%,0.5% and 0.33% respectively, then the maximum percentage error in A is

A physical quantity X is represented by X = (M^(x) L^(-y) T^(-z) . The maximum percantage errors in the measurement of M , L , and T , respectively , are a% , b% and c% . The maximum percentage error in the measurement of X will be

A physical quantity x is calculated from the relation x = ( a^(2) b^(3))/(c sqrt( d)) . If the percentage error in a, b , c , and d are 2% , 1% , 3%, and 4% , respectively , what is the percentage error in x ?

A physical quantity P is related to four observably a,b,c and d as follows P=a^(3)b^(3)//c^(1//2) d. The percentage errors of measurement in a,b,c and d are 1%, 3%, 4% and 2% respectively. What is the percentage error in the quantity P? If the value of P calculated using the above relation turns out to be 3.763, to what value should you round off the result?

A physical quantity X is give by the relation X = (2h^(3)I^(2))/(2sqrt(n)) The percentage error in the meansurement of k ,I,m and n are 1% ,2%, 3% and 4% respectively The value of X is uncertain by

Find the relative error in Z, if Z=A^(4)B^(1//3)//CD^(3//2) and the percentage error in the measurements of A,B,C and D are 4%,2%,3% and 1% respectively.

An experiment from X = (a^(1//2) b^(2))/( c^(3)) . If the percentage errors in a, b , and c are +- 1% , +- 3% , and +- 2% , respectively , then the percentage error in X can be

A physcial quantity X is related to four measurable quantites a, b, c and d as follows : X = a^2 b^3 c^(5//2) d^(-2) The percentage error in the measurement of a, b, c and d are 1% , 2%, 3% and 4%, respectively. What is the percentage error in quantity X ? if the value of X calculated on the basis of the above relation is 2.763, to what value should you round off the result ?