Home
Class 12
MATHS
lim(n rarr oo) (1/3 + 1/3^2 + 1/3^3 + . ...

`lim_(n rarr oo) (1/3 + 1/3^2 + 1/3^3 + . . . + 1/3^n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Value of lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) + 3 ^ (3) ... + n ^ (3)) / (n ^ (4))

lim_ (n rarr oo) (1 + 2 + 3 * -n) / (n ^ (2))

lim_ (n rarr oo) ((1 + 2 ^ (4) + 3 ^ (4) + ...... + n ^ (4)) / (n ^ (5))) - lim_ (n rarr oo ) ((1 + 2 ^ (6) + 3 ^ (6) + .... + n ^ (6)) / (n ^ (7)))

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))

Evaluate: lim_ (n rarr oo) (1 * 2 + 2 * 3 + 3 * 4 + ... + n (n + 1)) / (n ^ (3))

Evaluate: lim_ (n rarr oo) (1 ^ (4) + 2 ^ (4) + 3 ^ (4) + ... + n ^ (4)) / (n ^ (5)) - lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) + ... + n ^ (3)) / (n ^ (5))

Evaluate: lim_ (n rarr oo) (1 ^ (4) + 2 ^ (4) + 3 ^ (4) + ... + n ^ (4)) / (n ^ (5)) - lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) + ... + n ^ (3)) / (n ^ (5))

lim_ (n rarr oo) (3 ^ (n + 1) + 4 ^ (n + 1)) / (3 ^ (n) + 4 ^ (n)) equals

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (3n ^ (2)) =?

lim_ (n rarr oo) (1) / (n ^ (3)) {1 + 3 + 6 + ...... + (n (n + 1)) / (2)}