Home
Class 12
MATHS
Prove that lim(n rarr oo) ((n^n)/(n!))^(...

Prove that `lim_(n rarr oo) ((n^n)/(n!))^(1/n) = e`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_(n rarr oo)(1-(2)/(n))^(n)

lim_(n rarr oo)(1+(x)/(n))^(n)

lim_(n rarr oo)tan^-1n/n

lim_(n rarr oo)(n+(-1)^(n))/(n)

lim_ (n rarr oo) (x ^ (n)) / (n!)

lim_(n rarr oo)((-1)^(n)n)/(n+1)

" (e) "lim_(n rarr oo)[(n!)/(n^(n))]^(1/n)

lim_(n rarr oo)(n!)/((n+1)!-n!)