Home
Class 11
MATHS
sin^2 theta - cos theta = 1/4...

`sin^2 theta - cos theta = 1/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

The smallest positive angle theta satisfying the equation sin^(2) theta - 2 cos theta + (1//4) = 0 is

If (sin theta + cos theta)/(sin theta - cos theta) = (5)/(4) , the value of (tan^(2) theta + 1)/(tan^(2) theta - 1) is

The value of theta(0

If sin^(2)theta-2cos theta+(1)/(4)=0 ,then the general value of theta is

The value of (1-2 sin^2 theta cos^2 theta )/(sin^4 theta +cos^4 theta )-1 is: (1-2 sin^2 theta cos^2 theta )/(sin^4 theta +cos^4 theta )-1 का मान है :

If sin theta + sin^(2) theta = 1 , then prove that cos^(2) theta + cos^(4)theta = 1.

If (sin theta + cos theta)/(sin theta - cos theta)=3 , then the value of sin^(4)theta - cos^(4)theta is:

If cos theta =4/5 then sin^2 theta cos theta + cos^2 theta sin theta is equal to :

Prove each of the following identities : (i) (sin theta - cos theta)/(sin theta + cos theta) + ( sin theta+ cos theta)/(sin theta - cos theta) = (2)/((2 sin^(2) theta -1)) (ii) (sin theta + cos theta ) /(sin theta - cos theta) + ( sin theta - cos theta) /(sin theta + cos theta) = (2) /((1- 2 cos^(2) theta))

If sin theta+ cos theta= (1)/(2) , then 16(sin (2theta)+ cos (4theta) + sin (6theta)) is equal to