Home
Class 6
MATHS
[(-6a^3b^5)(2a^2b^3)]/(-18a^4b^8c^3)=...

`[(-6a^3b^5)(2a^2b^3)]/(-18a^4b^8c^3)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify the following (3a^(4)b^(3))(18a^(3)b^(5)) (ii) (3a^(7)b^(6))/(18a^(6)b^(8))((-2a^(2))/(b^(3)))^(3)

The HCF of the polynomials 12a^(3) b^(4) c^(2), 18a^(4) b^(3) c^(3) and 24a^(6) b^(2) c^(4) is ____

sqrt(a^3b^(-2/3)c^(7/6)) div sqrt(a^4b^-1c^(-5/4))

Factorize :12x^(3)y^(3)+16x^(2)y^(5)-4x^(5)y^(2)18a^(3)b^(2)+36ab^(4)-24a^(2)b^(3)

Add the following expressions: (i) x^3-2x^2y+3x y^2-y^3,\ 2x^3-5x y^2+3x^2y-4y^3 (ii) a^2-2a^3b+3a b^3+4a^2b^2+3b^4,-2a^4-5a b^3+7a^3b-6a^2b^2+b^4

If a,b,c are real numbers such that a+b+c=0 and a^(2)+b^(2)+c^(2)=1, then (3a+5b-8c)^(2)+(-8a+3b+5c)^(2)+(5a-8b+3c)^(2) is equal to

(2a+b)^2-6a-3b-4

Factorise: 18a ^(3) b^(3) - 27a ^(2) b^(3) + 36 a ^(3)b ^(2)

If [(a+4,3b),(8,-6)]=[(2a+2,b+2),(8,a-8b)] , the the respective values of a and b are:

If (4b^(2)+(1)/(b^(2)))=2, then (8b^(3)+(1)/(b^(3)))=? (a) 0 (b) 1 (c) 2 (d) 5