Home
Class 12
MATHS
lim(n rarr oo) b^n = 0 then 0 lt b lt 1 ...

`lim_(n rarr oo) b^n = 0` then `0 lt b lt 1` True/False

Promotional Banner

Similar Questions

Explore conceptually related problems

Find lim_ (n rarr oo) n ^ (n) (1 + n) ^ (- n)

lim_(n rarr oo)(n+(-1)^(n))/(n)

lim_(n rarr0)n*sin(1/n)

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

lim_(xrarr oo) (a^n_b^n)/(a^n-b^n) , where 1lt b lt a , is equal to

lim_(n to oo) 1/n =0 , lim_( n to oo) 1/n^2

lim_(n rarr oo) (1)/(n)= ________.

lim_(n rarr oo)((-1)^(n)n)/(n+1)

lim_ (n rarr oo) (n) / ((n!) ^ ((1) / (n)))