Home
Class 7
MATHS
(sqrt2+1)/(sqrt2-1)=a-bsqrt2...

`(sqrt2+1)/(sqrt2-1)=a-bsqrt2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of a and b in each of the following (i)(3+sqrt(2))/(3-sqrt(2))=a+bsqrt(2)" "(ii)(sqrt(2)+1)/(sqrt(2)-1)=a-bsqrt(2)" "(iii)(5+4sqrt(3))/(5-4sqrt(3))=a-bsqrt(3)

If (3+2sqrt2)/(3-sqrt2)=a+bsqrt2, "then a & b"(a, b inQ) are respectively equal to

If x=(sqrt2+1)/(sqrt2-1)andx-y=4sqrt2 then the value of (x^(2)+y^(2)) is

Let a,b inQ"such that"(39sqrt2-5)/(3-sqrt2)=a+bsqrt2, then (A) sqrt((b)/(a)) is a rational number (B) b and a are coprime rational numbers (C) b-a is a composite number (D) sqrt(a+b) is a rational number

Find the value of a and b if (i)(sqrt(3)+1)/(sqrt(3)-1)=a+bsqrt(3)" "(ii)(5+2sqrt(3))/(5-2sqrt(3))=a+bsqrt(3)

(sqrt2-1)/(sqrt2+1)times(sqrt2-1)/(sqrt2-1)=?

(sqrt2+sqrt7)/(sqrt2-sqrt7)=a+bsqrt(14)

The matrix A=[{:(1/sqrt2,1/sqrt2),((-1)/sqrt2,(-1)/sqrt2):}] is

2+sqrt2+1/(2+sqrt2)-1/(2-sqrt2) is equal to