Home
Class 10
MATHS
(x+sqrt3)/(x-sqrt3)+(x+sqrt5)/(x-sqrt5)...

`(x+sqrt3)/(x-sqrt3)+(x+sqrt5)/(x-sqrt5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate ((x+sqrt(3))(x-sqrt(5))+(x+sqrt(5))(x-sqrt(3)))/((x-sqrt(3))(x-sqrt(5)))

If x=(5-sqrt3)/(5+sqrt3) and y=(5+sqrt3)/(5-sqrt3) then show that x-y=-(10sqrt3)/11

If 2sqrtx= (sqrt5 + sqrt3)/(sqrt5 - sqrt3)-(sqrt5 - sqrt3)/(sqrt5 + sqrt3) then what is the value of x ?

If 40 sqrt5 x^3-3 sqrt3 y^3=(2 sqrt5x- sqrt3y)(Ax^2+Cy^2+Bxy) , then the value of sqrt((B^2+C^2-A)) is: यदि 40 sqrt5 x^3-3 sqrt3 y^3=(2 sqrt5x- sqrt3y)(Ax^2+Cy^2+Bxy) है, तो sqrt((B^2+C^2-A)) का मान ज्ञात करें |

sqrt(x)+sqrt(5+x)=15/sqrt(5+x)

sqrt(x)+sqrt(5+x)=15/sqrt(5+x)

(2)/(sqrt(3)+sqrt(5))+(5)/(sqrt(3)-sqrt(5))=x sqrt(3)+y sqrt(5)

sqrt(5)x^(2)+2x-3sqrt(5)

If x=(sqrt5+sqrt2)/(sqrt5-sqrt2) and y=(sqrt5-sqrt2)/(sqrt5+sqrt2) then find the value of (3x-2y)(x+2y)