Home
Class 11
MATHS
Find the value of i+i^2+i^3+i^4...

Find the value of `i+i^2+i^3+i^4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of 1+i^2+i^4+i^6++i^(2n)

Find the value of i^(12)+i^(13)+i^(14)+i^(15)

Find the value of i^(4) + i^(5) + i^(6) + i^(7) .

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N.

Find the value of i^n+i^(n+1)+i^(n+2)+i^(n+3) for all n in Ndot

Find the value of i^n+i^(n+1)+i^(n+2)+i^(n+3) for all n in Ndot

Given points P(2,3),Q(4,-2),a n dR(alpha,0) (i) Find the value of ( i i )alpha( i i i ) (iv) if ( v ) (vi) P R+r Q (vii) (viii) is minimum (ix) Find the value of ( x )alpha( x i ) (xii) if ( x i i i ) (xiv)|( x v ) P R-R Q|( x v i ) (xvii) is maximum

The value of i + i^(2) + i^(3) + i^(4) is ________

If n in NN , then find the value of i^n+i^(n+1)+i^(n+2)+i^(n+3) .

Find the value of x and y given that (x + yi) (2-3i)=4+i