Home
Class 14
MATHS
If P=[5/9"of"6(3)/4div25/16+29/30]"of"[3...

If `P=[5/9"of"6(3)/4div25/16+29/30]"of"[361/24div(1/4+4/3)^2]`, then the value of 5P is:

A

97

B

101

C

105

D

111

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( P = \left[\frac{5}{9} \text{ of } 6\left(\frac{3}{4}\right) \div \frac{25}{16} + \frac{29}{30}\right] \text{ of } \left[\frac{361}{24} \div \left(\frac{1}{4} + \frac{4}{3}\right)^2\right] \), we will follow the order of operations (BODMAS/BIDMAS). ### Step-by-Step Solution: 1. **Calculate the expression inside the first bracket:** - Start with \( \frac{1}{4} + \frac{4}{3} \). - To add these fractions, find a common denominator, which is 12: \[ \frac{1}{4} = \frac{3}{12}, \quad \frac{4}{3} = \frac{16}{12} \] \[ \frac{1}{4} + \frac{4}{3} = \frac{3}{12} + \frac{16}{12} = \frac{19}{12} \] 2. **Square the result:** \[ \left(\frac{19}{12}\right)^2 = \frac{361}{144} \] 3. **Calculate \( \frac{361}{24} \div \frac{361}{144} \):** - Dividing by a fraction is the same as multiplying by its reciprocal: \[ \frac{361}{24} \div \frac{361}{144} = \frac{361}{24} \times \frac{144}{361} = \frac{144}{24} = 6 \] 4. **Now substitute back into the original expression for \( P \):** \[ P = \left[\frac{5}{9} \text{ of } 6\left(\frac{3}{4}\right) \div \frac{25}{16} + \frac{29}{30}\right] \text{ of } 6 \] 5. **Calculate \( 6 \left(\frac{3}{4}\right) \):** \[ 6 \times \frac{3}{4} = \frac{18}{4} = \frac{9}{2} \] 6. **Now calculate \( \frac{9}{2} \div \frac{25}{16} \):** - Again, multiply by the reciprocal: \[ \frac{9}{2} \div \frac{25}{16} = \frac{9}{2} \times \frac{16}{25} = \frac{144}{50} = \frac{72}{25} \] 7. **Add \( \frac{72}{25} + \frac{29}{30} \):** - Find a common denominator, which is 150: \[ \frac{72}{25} = \frac{432}{150}, \quad \frac{29}{30} = \frac{145}{150} \] \[ \frac{72}{25} + \frac{29}{30} = \frac{432 + 145}{150} = \frac{577}{150} \] 8. **Now calculate \( P \):** \[ P = \left[\frac{577}{150}\right] \text{ of } 6 = \frac{577}{150} \times 6 = \frac{3462}{150} = \frac{1154}{50} = \frac{577}{25} \] 9. **Finally, calculate \( 5P \):** \[ 5P = 5 \times \frac{577}{25} = \frac{2885}{25} = 115.4 \] ### Final Answer: The value of \( 5P \) is \( 115.4 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If A = [3/7 "of" "4"1/5 div 18/25 + 17/24] of [289/16 div (3/4 + 2/3)^2 "of"8"] ,then the value of A as :

(3/4+5/8) div 1/16=

The value of [5 4/9 div (11/4-13/6)^2] div [7 3/11 of 8 4/5 div 1 5/7-4/3]^2 is: [5 4/9 div (11/4-13/6)^2] div [7 3/11 of 8 4/5 div 1 5/7-4/3]^2 का मान है:

The value of 9/15 of (2/3 div 2/3 of 3/2) div (3/4xx3/4 div 3/4 of 4/3) of (5/4 div 5/2 xx 2/5 of 4/5) is :- 9/15 of (2/3 div 2/3 of 3/2) div (3/4xx3/4 div 3/4 of 4/3) of (5/4 div 5/2 xx 2/5 of 4/5) का मान ज्ञात करें |

The value of 8/9 of (5 1/4 div 2 1/3 of 4) div (8 div 2/3 of 4/5) of (8xx 2/3 div 4/5) is 8/9 of (5 1/4 div 2 1/3 of 4) div (8 div 2/3 of 4/5) of (8xx 2/3 div 4/5) का मान ज्ञात करें |

The Value of (2 6/7 of 4 1/5 div 2/3)xx1 1/9 div (3/4xx2 2/3 of 1/2 div 1/4) is : (2 6/7 of 4 1/5 div 2/3)xx1 1/9 div (3/4xx2 2/3 of 1/2 div 1/4) का मान है :

Find the value of p, if 5^(2p+1)div25=125 .

The value of [2/3 div8/12" of "2/5+2/5" of 7"1/2 div 3/4]" of "4/19 is :

The value of (2(6)/(7)"of"4(1)/(5)div(2)/(3))xx1(1)/(9)div((3)/(2)xx2(2)/(3)"of"(1)/(2)div(1)/(4)) is :

The value of [4/7 of 2 4/5xx1 2/3-(3 1/2-2 1/6)]div (3 1/5 div 4 1/2 of 5 1/3) is: [4/7 of 2 4/5xx1 2/3-(3 1/2-2 1/6)]div (3 1/5 div 4 1/2 of 5 1/3) का मान ज्ञात कीजिए?