Home
Class 14
MATHS
If 3^x-3^(x-2)-72=0, then the value of x...

If `3^x-3^(x-2)-72=0`, then the value of `x^(x/2)` is:

A

9

B

27

C

16

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3^x - 3^{x-2} - 72 = 0 \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 3^x - 3^{x-2} - 72 = 0 \] We can rewrite \( 3^{x-2} \) as \( \frac{3^x}{3^2} = \frac{3^x}{9} \). Thus, the equation becomes: \[ 3^x - \frac{3^x}{9} - 72 = 0 \] ### Step 2: Factor out \( 3^x \) Next, we can factor out \( 3^x \): \[ 3^x \left(1 - \frac{1}{9}\right) - 72 = 0 \] Calculating \( 1 - \frac{1}{9} \) gives us: \[ 1 - \frac{1}{9} = \frac{9}{9} - \frac{1}{9} = \frac{8}{9} \] So the equation becomes: \[ 3^x \cdot \frac{8}{9} - 72 = 0 \] ### Step 3: Isolate \( 3^x \) Now, we can isolate \( 3^x \): \[ 3^x \cdot \frac{8}{9} = 72 \] Multiplying both sides by \( \frac{9}{8} \) gives: \[ 3^x = 72 \cdot \frac{9}{8} \] ### Step 4: Simplify the right side Calculating \( 72 \cdot \frac{9}{8} \): \[ 72 \cdot \frac{9}{8} = \frac{72 \cdot 9}{8} = \frac{648}{8} = 81 \] Thus, we have: \[ 3^x = 81 \] ### Step 5: Solve for \( x \) Since \( 81 = 3^4 \), we can equate the exponents: \[ x = 4 \] ### Step 6: Find \( x^{(x/2)} \) Now we need to find \( x^{(x/2)} \): \[ x^{(x/2)} = 4^{(4/2)} = 4^2 = 16 \] ### Final Answer Thus, the value of \( x^{(x/2)} \) is: \[ \boxed{16} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(4) - 3x^(2) - 1 = 0 , then the value of (x^(6)-3x^(2)+(3)/(x^(2))-(1)/(x^(6))+1) is :

If x^(3)-3x+2>=0, then the minimum value of x is

If x ^(2) - 3 sqrt2 x +1 = 0, then the value of x ^(3) + (1)/(x ^(3)) is :

If 2^(x).3^(2x)=100 , then the value of x is (log2=0.3010,log3=0.4771)

If x^2 - 3x +1=0, then the value of x +1/x is

If 4x^(3)+8x^(2)-x-2=0 then the value (2x+3) is given by