Home
Class 8
MATHS
The value of (2^n-2^(n-1))/(2^(n+1)-2^n)...

The value of `(2^n-2^(n-1))/(2^(n+1)-2^n)` is
`(a) 1/2`
`(b) 3/2`
`(c) 2*(n-1)/(n+1)`
`(d) 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (2^(n-1)-2^(n))/(2^(n+4)+2^(n+1)) is a.-(1)/(36)b*(2)/(3)c(1)/(13)d*(5)/(13)

The value of (n+2).^(n)C_(0).2^(n+1)-(n+1).^(n)C_(1).2^(n)+(n).^(n)C_(2).2^(n-1)-….." to " (n+1) terms is equal to

A value of n such that ((sqrt(3))/(2)+(i)/(2))^(n)=1 is (A) 12 (B) 3 (C) 2 (D) 1

The value of lim_(ntooo) [(2n)/(2n^(2)-1)"cos"(n+1)/(2n+1)-(n)/(1-2n).(n)/(n^(2)+1)] is

The arithmetic mean of the series 1,2,4,8,16,....2^(n) is (2^(n)-1)/(n+1) (b) (2^(n)+1)/(n) (c) (2^(n)-1)/(n) (d) (2^(n+1)-1)/(n+1)

Let the sequence a_(1),a_(2),a_(3),...,a_(n) from an A.P.Then the value of a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-...+a_(2n-1)^(2)-a_(2n)^(2) is (2n)/(n-1)(a_(2n)^(2)-a_(1)^(2))(b)(n)/(2n-1)(a_(1)^(2)-a_(2n)^(2))(n)/(n+1)(a_(1)^(2)-a_(2n)^(2))(d)(n)/(n-1)(a_(1)^(2)+a_(2n)^(2))

The arithmetic mean of 1,2,3,...n is (a) (n+1)/(2) (b) (n-1)/(2) (c) (n)/(2)(d)(n)/(2)+1

If n is a positvie integers, the value of E=(2n+1).^(n)C_(0)+(2n-1).^(n)C_(1)+(2n-3)^(n)C_(2)+………+1. ^(n)C_(n)2 is

The value of lim_( n to oo) ((1)/(n) + (n)/((n+1)^2) + (n)/( (n+2)^2) + ...+ (n)/( (2n-1)^2) ) is