Home
Class 12
MATHS
int(1/sqrt3)^(sqrt3)1/(1+x^2)dx...

`int_(1/sqrt3)^(sqrt3)1/(1+x^2)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral I=int_((1)/(sqrt3))^(sqrt3)(dx)/(1+x^(2)+x^(3)+x^(5)) is equal to

int_1^sqrt(3) dx/(sqrt(1 - x^2))

If int_((-1)/(sqrt3))^(1//sqrt3)(x^(4))/(1-x^(4))cos^(-1)((2x)/(1+x^(2)))dx=k , then int_(0)^(1//sqrt3)(x^(4))/(1-x^(4))dx the value of k is equal to

The value of I=int_(-sqrt(3)/2)^(sqrt(3)/2)(dx)/((1-x)sqrt(1-x^(2))) is

Evaluate: int_1^(sqrt3) 1/(1+x^2) dx

" (v) "int(1)/(sqrt(x-3)-sqrt(x+2))dx

int_(sqrt(2)//3)^(sqrt(3)//3)(1)/(sqrt(4-9x^(2)))dx=

The fx^n y=f(n) is the sol of diff eq^n (dy)/(dx)+(xy)/(x^2-1)=(x^4+2x)/sqrt(1-x^2) in (-1,1) satisfying f(0)=0 then int_(-sqrt3/2)^(sqrt3/2) f(n)ndx is