Home
Class 9
MATHS
sqrt(x)-1/sqrt(x)= x=2-sqrt(3)...

`sqrt(x)-1/sqrt(x)=`
`x=2-sqrt(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sqrt(x)+(1)/(sqrt(x)) if x=2-sqrt(3)

Find the value of sqrt(x)-(1)/(sqrt(x)) if x=3+2sqrt(2)

If x=5+2sqrt(6), then sqrt(x)-(1)/(sqrt(x)) is a.2sqrt(2)b2sqrt(3)c*sqrt(3)+sqrt(2)d*sqrt(3)-sqrt(2)

For (1)/(asqrt(x)+bsqrt(y)) the rationalising factor is a asqrt(x)-bsqrt(y) . If x=(7sqrt(3))/(sqrt(10)+sqrt(3))-(3sqrt(2))/(sqrt(15)+3sqrt(2))-(2sqrt(5))/(sqrt(6)+sqrt(5)) , then value of x^(4)+x^(2) is

If 3sqrt(3sqrt(x-(1)/(3sqrt(x))=2 , then 3sqrt(x)+((1)/(3sqrt(x))) =___________

if x=sqrt(3)+(1)/(sqrt(3)) and y=sqrt(3)-(1)/(sqrt(3)) then x^(2)-y^(2) is

If (sqrt(x + 2) + sqrt(x-3))/(sqrt(x+2) - sqrt(x - 3)) = 5 , then the value of x is

If x=(sqrt(3)+1)/(sqrt(3)-1) and y=(sqrt(3)-1)/(sqrt(3)+1) then find the value of x^(2)+y^(2)