Home
Class 11
MATHS
sqrt(i)= a)+-(1-i)/sqrt(2) b)+-(1+i)...

`sqrt(i)`=
a)`+-(1-i)/sqrt(2)`
b)`+-(1+i)/sqrt(2)`
c)`+-(1-i)`
d)`+-(1+i)`

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(-i) = (1-i)/sqrt2

(i)1/sqrt(2)+sqrt(3)+1/sqrt(2)

(iii) (1+i)/(sqrt(2))=sqrt(i)

Prove that : (i) sqrt(i)= (1+i)/(sqrt(2)) (ii) sqrt(-i)=(1- i)/(sqrt(2)) (iii) sqrt(i)+sqrt(-i)=sqrt(2)

(5+sqrt(2)i)/(1-2sqrt(i))

(sqrt(3)+i)/((1+i)(1+sqrt(3)i))|=

If z is a complex number having least absolute value and |z-2+2i|=1 ,then z= (2-1//sqrt(2))(1-i) b. (2-1//sqrt(2))(1+i) c. (2+1//sqrt(2))(1-i)"" d. (2+1//sqrt(2))(1+i)

sqrt(4i)=1.)+-sqrt(2)(1-i)2.)+-(1+i)3.+-(1-i)4.)+-sqrt(2)(1+i)

log((1+i sqrt(3))/(1-i sqrt(3)))