Home
Class 12
MATHS
If A=[[1,2],[-1,-2]] then A^2 is equal t...

If `A=[[1,2],[-1,-2]]` then `A^2` is equal to
`[[1,-2],[-1,2]]`
`[[-1,-2],[1,2]]`
`[[1,4],[1,4]]`
`[[-1,2],[-1,2]]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(-2,4),(-1,2)] then A^(2) is equal to

If A=[(1,2,2),(2,1,2),(2,2,1)] then A^(2)-4A is equal to

If A^(-1)=(-1)/(2)[[1, -4], [-1, 2]] , then A=

If A=[(3,4,1),(1,0,-2),(-2,-1,2)] then A^(-1) =?

The matrix A^2 + 4 A-5I, where I is identity matrix and A = [[1,2],[4,-3]]equals : (A) 32[[1,1],[1,0]] (B) 4[[2,1],[2,0]] (C) 4[[0,-1],[2,2]] (D) 32[[2,1],[2,0]]

If A = [(2,2,1), (1,3,1), (1,2,2)] then A^-1+(A-5I) (AI)^2 = (i) 1/ 5 [[4,2, -1], [-1,3,1], [-1,2,4]] (ii) 1/5 [[4, -2, -1], [-1, 3, -1], [-1, -2,4]] (iii) 1/3 [[4,2, -1], [-1,3,1], [-1,2,4]] (iv) 1/3 [[4, -2, -1], [-1,3, -1], [-1, -2,4]]

A=[(1,2),(2,1)], then adjoint of A is equal to (A) [(1,-2),(-2,1)] (B) [(2,1),(2,1)] (C) [(1,-2),(-2,1)] (D) [(-1,2),(2,-1)]

(b) Find the rank of the matrix [[1,-1,2,-1],[4,2,-1,2],[3,2,-2,0]]

If A+B=[[1,2,1],[1,1,-1],[-3,2,4]] and A-B=[[-2,3,7],[-4,1,0],[2,4,1]] then 2A+4B equals

If A=[(1,2),(4,1)] , then A^-1= (A) [(-1,-2),(4,1)] (B) 1/7 [(1,2),(-4,-1)] (C) 1/7[(-1,-2),(4,1)] (D) 1/9[(1,2),(4,1)]