Home
Class 9
MATHS
((2+sqrt(3))/(2-sqrt(3)))^3-((2-sqrt(3))...

`((2+sqrt(3))/(2-sqrt(3)))^3-((2-sqrt(3))/(2+sqrt(3)))^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

(5+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))

(2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))=

The value of (2 + sqrt(3))/(2- sqrt(3)) + (2- sqrt(3))/(2 + sqrt(3)) + ( sqrt(3) + 1)/(sqrt(3) -1) is

((2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)-1)/(sqrt(3)+1)) simplifies to 16-sqrt(3)(b)4-sqrt(3)(c)2-sqrt(3) (d) 2+sqrt(3)

(2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)+1)/(sqrt(3)-1)is

3(2 + sqrt3)(2 - sqrt3)

Simplify (i) (4+ sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/(4+sqrt(5)) (ii) (1)/(sqrt(3) + sqrt(2)) - (2)/(sqrt(5)-sqrt(3)) -(2)/(sqrt(2) - sqrt(5)) (iii) (2+sqrt(3))/(2-sqrt(3)) + (2-sqrt(3))/(2+sqrt(3)) + (sqrt(3)-1)/(sqrt(3)+1) (iv) (2+sqrt(6))/(sqrt(2)+sqrt(3))+(6sqrt(2))/(sqrt(6)+sqrt(3)) -(8sqrt(3))/(sqrt(6)+sqrt(2))

If sqrt(2) = 1.414, sqrt(3) = 1.732, sqrt(5) = 2.236 and sqrt(6) = 2.449 , find the value of (2+sqrt(3))/(2-sqrt(3)) +(2-sqrt(3))/(2+sqrt(3)) +(sqrt(3) -1)/(sqrt(3) +1)