Home
Class 11
MATHS
The value of sqrt(-i)= A)+-((1+i)/sqrt...

The value of `sqrt(-i)=`
A)`+-((1+i)/sqrt(2))`
B)`+-((1-i)/sqrt(2))`
C)`+-((-1+i)/sqrt(2))`
D) N.O.T.

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(i) = a) +-(1-i)/sqrt(2) b) +-(1+i)/sqrt(2) c) +-(1-i) d) +-(1+i)

If n in N((1+i)/(sqrt(2)))^(8n)+((1-i)/(sqrt(2)))^(8)n is

n in N((1+i)/(sqrt(2)))^(8n)+((1-i)/(sqrt(2)))^(8n)=

n in N,((1+i)/(sqrt(2)))^(8n)+((1-i)/(sqrt(2)))^(8n)=

(iii) (1+i)/(sqrt(2))=sqrt(i)

sqrt(-i) = (1-i)/sqrt2

The value of I=int_(-sqrt(3)/2)^(sqrt(3)/2)(dx)/((1-x)sqrt(1-x^(2))) is

The modulus of (sqrt(3)+i)/((1+i)(1+sqrt(3)i)) is

the value of ((1+i sqrt(3))/(1-i sqrt(3)))^(6)+((1-i sqrt(3))/(1+i sqrt(3)))^(6) is