Home
Class 9
MATHS
Prove thatsqrt((a+sqrt(a^2-b))/2)+sqrt((...

Prove that`sqrt((a+sqrt(a^2-b))/2)+sqrt((a-sqrt(a^2-b))/2)=sqrt(a+sqrt(b))`

Promotional Banner

Similar Questions

Explore conceptually related problems

(4+sqrt(2))/(2+sqrt(2))=a-sqrt(b)

(a+c sqrt(b))(2+y sqrt(b))

(1+sqrt(2))/(3-2sqrt(2))=A sqrt(2)+B

a((sqrt(a)+sqrt(b))/(2b sqrt(a)))^(-1)+b((sqrt(a)+sqrt(b))/(2a sqrt(b)))^(-1)

The conjugate surd of sqrt(a)+b is sqrt(a)-b b- "sqrt(a) sqrt(a)+sqrt(b) sqrt(a)-sqrt(b)

(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))=a+b sqrt(6)

(sqrt(2)+sqrt(3))/(3sqrt(2)-2sqrt(3))=2-b sqrt(6) find b

sqrt(a/b+b/a-2)= 1) sqrt(a/b)+sqrt(b/a) 2) sqrt(a/b)-sqrt(b/a) 3) sqrt(a)/b-b/sqrt(a) 4) sqrt(a)/b-sqrt(b)/a