Home
Class 6
MATHS
Find the value of -[-{-(a-b-c)}]...

Find the value of `-[-{-(a-b-c)}]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|

If [a b c]=2 , then find the value of [(a+2b-c)(a-b)(a-b-c)] .

If abc =0 then find the value of [(x^a)^b]^c .

If a b c=0 , then find the value of {(x^a)^b}^c (a)1 (b) a (c)b (d) c

Let a,b,c belong to R and a!=b!=c then find the value of ((a-b)^(2))/((b-c)(c-a))+((b-c)^(2))/((a-b)(c-a))+((c-a)^(2))/((a-b)(b-c))

Let a,b,c belong to R and a!=b!=c then find the value of ((a-b)^(2))/((b-c)(c-a))+((b-c)^(2))/((a-b)(c-a))+((c-a)^(2))/((a-b)(b-c))

if (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b) then find the value of a^(a)b^(b)c^(c)

If ab + bc + ca = 0, then find the value of (b)/((a+b)(b+c))+(c)/((a+c)(c+b))+(a)/((a+b)(c+a))

If -> a , -> b , -> c are unit vectors such that -> a+ -> b+ -> c= ->0 find the value of -> adot -> b+ -> bdot -> c+ -> cdot -> a .