Home
Class 12
MATHS
lim(y->0)[(sqrt(1-y^2)-sqrt(1+y^2))/y^2]...

`lim_(y->0)[(sqrt(1-y^2)-sqrt(1+y^2))/y^2]`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^1y^2sqrt(1-y^2)dy

lim_(yto0) (sqrt(1+sqrt(1+y^4))-sqrt2)/y^4

lim_(y->oo)(sqrt(1+sqrt(1+y^(4)))-sqrt(2))/(y^(4))= (a) (1)/(4sqrt(2)) (b) (1)/(2sqrt(2)) (c) (1)/(2sqrt(2)(1+sqrt(2))) (d) does not exist

sin^(-1)x+sin^(-1)y=cos^(-1)(sqrt(1-x^(2))sqrt(1-y^(2))-xy) if x in[0,1],y in[0,1]

lim_(x rarr0)(x sqrt(y^(2)-(y-x)^(2)))/({sqrt(8xy-4x^(2))+sqrt(8xy)}^(3))=

Simplify : (sqrt(x^(2)+y^(2))-y)/(x-sqrt(x^(2)-y^(2)))-:(sqrt(x^(2)-y^(2))+x)/(sqrt(x^(2)+y^(2))+y)

lim_(y to 0) ((y - 2) + 2sqrt(1 + y + y^(2)))/(2y) is equal to _______

Prove that sin ^ (- 1) x + cos ^ (- 1) y = (tan ^ (- 1) (xy + sqrt ((1-x ^ (2)) (1-y ^ (2)))) ) / (y sqrt (1-x ^ (2)) - x sqrt (1-y ^ (2)))