Home
Class 9
MATHS
(sqrt(2)+7)/(sqrt(2)-1)+sqrt(8)...

`(sqrt(2)+7)/(sqrt(2)-1)+sqrt(8)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify each of the following : (i)(sqrt(2)+1)/(sqrt(2)-1)+(sqrt(2)-1)/(sqrt(2)+1)" "(ii)(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))" "(iii)(2)/(sqrt(5)+sqrt(3))+(1)/(sqrt(3)+sqrt(2))-(3)/(sqrt(5)+sqrt(2))" "(iv)(sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5))-(sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))

1/(1-sqrt(2))+ 1/(sqrt(2)-sqrt(3))+1/(sqrt(3)-sqrt(4))+..........+1/(sqrt(8)-sqrt(9))

(sqrt(2)-sqrt(8))/(sqrt(2)+sqrt(8))

Prove that, cot 7 1/2 ^@ or tan 82 1/2 ^@ = (sqrt(3)+sqrt(2))(sqrt(2)+1) or sqrt(2)+sqrt(3)+sqrt(4)+sqrt(6)

(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(8))

(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(9))

(1)/(sqrt(7)-sqrt(2))-(1)/(sqrt(7)+sqrt(2))=

Rationailise the denominatios (1)/(sqrt(7)+sqrt(2))-(sqrt(7)+sqrt(2))/(sqrt(7)-sqrt(2))

Prove that: 1/(1+sqrt(2))+1/(sqrt(2)+sqrt(3))+1/(sqrt(3)+sqrt(4))+1/(sqrt(4)+sqrt(5))+1/(sqrt(5)+sqrt(6))+1/(sqrt(6)+sqrt(7))+1/(sqrt(7)+sqrt(8))+1/(sqrt(8)+sqrt(9)) = 2

Simplify (sqrt(7)+sqrt(2))(sqrt(7)-sqrt(2))