Home
Class 9
MATHS
[sqrt(1+sqrt(1+sqrt(1)))]^4...

`[sqrt(1+sqrt(1+sqrt(1)))]^4`

Promotional Banner

Similar Questions

Explore conceptually related problems

x=sqrt(1+2sqrt(1+3sqrt(1+4sqrt(1+...))))

6 + log_(1/4) (1/sqrt(2))[sqrt(1-(1/sqrt(2))sqrt(1-(1/sqrt(2))sqrt(1-(1/sqrt(2)))]

sqrt(4sqrt(-5)-1)=

Explain the fallacy in the following: -1=i.i=sqrt(-1).sqrt(-1)=sqrt((-1)(-1))=sqrt(1)=1

The value of ((sqrt(sqrt(3)+1)+sqrt(sqrt(3)-1))^(2)(sqrt(3)-sqrt(2)))/((sqrt(sqrt(3)+1))^(2)-(sqrt(sqrt(3)-1))^(2)) is

Which of the following is equal to root(3)(-1)?(sqrt(3)+sqrt(-1))/(2) b.(-sqrt(3)+sqrt(-1))/(sqrt(-4)) c.(sqrt(3)-sqrt(-1))/(sqrt(-4))d.-sqrt(-1)

Evaluate 1/(1+sqrt(2))+1/(sqrt(2)+sqrt(3))+1/(sqrt(3)+sqrt(4))

sqrt(x+1)-sqrt(x-1)=sqrt(4x-1)

Let S=(sqrt(1))/(1+sqrt1+sqrt(2))+sqrt(2)/(1+sqrt(2)+sqrt(3))+(sqrt(3))/(1+sqrt(3)+sqrt(4))+...+(sqrt(n))/(1+sqrt(n)+(sqrtn+1))=10 Then find the value of n.

If a+b+c=6 then the maximum value of sqrt(4a+1)+sqrt(4b+1)+sqrt(4c+1)=