Home
Class 11
MATHS
If sin A = 1/sqrt10 and sin B =1/sqrt5, ...

If `sin A = 1/sqrt10 and sin B =1/sqrt5`, where A and B are positive acute angles, then `A + B` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If sinA=(1)/(sqrt(10))andsinB=(1)/(sqrt(5)) , where A and B are positive acute angles, then A+B=?

If sin A=1//sqrt(10), sin B= 1//sqrt(5) where A and B are positive and acute , then A +B=

If sin A=(2)/(sqrt(5)) and cos B=(1)/(sqrt(10)), where A and B are acute angles,then what is the value of A+B

If sin A = 1/ sqrt(5) , cos B = 3/ sqrt(10) , A, B being positive acute angles, then what is (A + B) equal to ?

If sin A= cos B , where A and B are acute angles, then A+B =__________

In sinA= 1/sqrt5, cosB= 3/sqrt10 , A, B being positive acute angles, then what is (A + B) equal to ?

If sin alpha = 1/sqrt10, cos beta = 2/sqrt5 "and" alpha, beta are positive acute angles, then find the value of (alpha + beta)

If cos A=5/13 and sin B= 4/5 , find sin (A + B), where A, B, (A + B) are positive acute angles.