Home
Class 12
PHYSICS
A particle is acted upon by constant for...

A particle is acted upon by constant forces
`vec(F)_(1)=(2hat(i)-3hat(j)+4hat(k))` and `vec(F)_(2)=(-hat(i)+2hat(j)-3hat(k))` is displaced from the point `A(2,1,0)` to the point `B(-3,-4,2)`. Find the total work done by the forces.

Promotional Banner

Similar Questions

Explore conceptually related problems

Two forces vec(F)_(1) = - hat(i) + 2 hat(j) - 3hat(k) and vec(F)_(2) = 2hat(i) - 4hat(j) +3hat(k) act on a body and cause it to displace from point A(3,1,2) to B (-4,-2,3) . Calculate the total work done on the particle .

Find the scalar and vector products of two vectors vec(a)=(2hat(i)-3hat(j)+4hat(k)) and vec(b)(hat(i)-2hat(j)+3hat(k)) .

If vec(a)=(hat(i)-hat(j)+2hat(k)) and vec(b)=(2hat(i)+3hat(j)-4hat(k)) then |vec(a)xx vec(b)|=?

Find the torque of the force vec(F)=(2hat(i)-3hat(j)+4hat(k)) N acting at the point vec(r )=(3hat(i)=2hat(j)+3hat(k)) m about the origion.

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

Let vec(A)=2hat(i)-3hat(j)+4hat(k) and vec(B)=4hat(i)+hat(j)+2hat(k) then |vec(A)xx vec(B)| is equal to

Two forces are acting on a same body vec(F_(1))=(2hat(i)+3hat(j)-hat(k)) and vec(F_(2))=(hat(i)+2hat(j)+4hat(k)) , then find component of vec(F_(1)) along vec(F_(2)) .

Find the sum of the vectors vec(a)=(hat(i)-3hat(k)), vec(b)=(2hat(j)-hat(k)) and vec(c)=(2hat(i)-3hat(j)+2hat(k)) .

If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k) , find |vec(a)-2 vec(b)| .