Home
Class 12
MATHS
alpha beta are roots of ax^2 + bx + c = ...

`alpha` `beta` are roots of `ax^2 + bx + c = 0` then `( aalpha + b)^-2 + (abeta + b)^-2​`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are roots of ax^(2) + bx + c = 0 , then find the value of a((alpha^(2) + beta^(2))/(beta alpha)) + b((alpha)/(beta) + (beta)/(alpha))

37. If alpha and beta are the roots of ax^(2)+bx+c=0, then the value of (a alpha+b)^(-2)+(a beta+b)^(-2) is equal to

If alpha and beta are the roots of equation ax^2 + bx + c = 0, then the value of alpha/beta + beta/alpha is

If alpha,beta are the roots of ax^(2)+2bx+c=0 then (alpha)/(beta)+(beta)/(alpha)=

If alpha,beta are the roots of ax^(2)+bx+c=0 then the value ((alpha)/(beta)-(beta)/(alpha))^(2) is ...

if alpha,beta are root of ax^(2)+bx+c=0 then ((1)/(alpha^(2))-(1)/(beta^(2)))^(2)

If alpha , beta are the roots of ax^(2) +bx+c=0, ( a ne 0) and alpha + delta , beta + delta are the roots of Ax^(2) +Bx+C=0,(A ne 0) for some constant delta , then prove that (b^(2)-4ac)/(a^(2))=(B^(2)-4AC)/(A^(2)) .

If alpha, beta are roots of ax^(2)+bx+c=0 , then : int((x-alpha)(x-beta))/(ax^(2)+bx+c)dx=