Home
Class 12
MATHS
int(f'(x))/(sqrt(f(x)))*dx...

`int(f'(x))/(sqrt(f(x)))*dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a continuous function satisfying f(x + y) = f (x) f( y) (x, y in R) with f(1) = e then the value of int(xf(x))/(sqrt(1+f(x)))dx is

int(f'(x))/([f(x)]^(2))dx=

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

Let f(x)=(x+1)/(x+2). If int((f(x))/(x^(2)))^((1)/(2))dx=(1)/(sqrt(2))g((sqrt(2f(x))-1)/(sqrt(2f(x))+1))-h((sqrt(f(x))-1)/(sqrt(f(x))+1))

int(f'(x))/(f(x)log{f(x)})dx=

int(f'(x))/(f(x))dx=log f(x)+c

If int f(x)dx=F(x),f(x) is a continuous function,then int(f(x))/(F(x))dx equals

f(x) = int(x^(2)+x+1)/(x+1+sqrt(x))dx , then f(1) =

If int1/((1+x)sqrt(x))dx=f(x)+A , where A is any arbitrary constant, then the function f(x) is