Home
Class 12
MATHS
If tan^(-1)(1)+tan^(-1)(x)=0 then the va...

If `tan^(-1)(1)+tan^(-1)(x)=0` then the value of "x" is

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)(x+1)/(x-1)+tan^(-1)(x-1)/x=tan^(-1)(-7) , then the value of x is (a) 0 (b) -2 (c) 1 (d) 2

IF tan^-1(1+x)+tan^-1(1-x)=pi/2 , then the value of x is

If tan^(-1)x+tan^(-1)y+tan^(-1)z=0 then the value of (1)/(xy)+(1)/(yz)+(1)/(zx)is(x,y,z!=0)

If 3tan^(-1)((1)/(2+sqrt3))-tan^(-1).(1)/(3)=tan^(-1).(1)/(x) , then the value of x is equal to

If int_(0)^(1) tan^(-1) x dx = p , then the value of int_(0)^(1) tan^(-1)((1-x)/(1 +x)) dx is

If tan^(-1)((1-x)/(1+x))=1/2 tan^(-1) x then the value of x is

If tan^(-1)(x+2)+tan^(-1)(x-2)-tan^(-1)((1)/(2))=0 , them one of the values of x is equal to

If tan^(-1)(x+(3)/(x))-tan^(-1)(x-(3)/(x))=tan^(-1)(6)/(x) then the value of x^(4) is