Home
Class 12
MATHS
vec a.(vec b-vec c)=...

`vec a.(vec b-vec c)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The length of the perpendicular form the origin to the plane passing through the point a and containing the line vec r= vec b+lambda vec c is a. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c+ vec cxx vec a|) b. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c|) c. ([ vec a vec b vec c])/(| vec bxx vec c+ vec cxx vec a|) d. ([ vec a vec b vec c])/(| vec cxx vec a+ vec axx vec b|)

Solve the following equation for the vector vec p; vec p xx vec a+(vec p. vec b)vec c=vec b xx vec c where vec a ,vec b,vec c are non zero non coplanar vectors and vec a is neither perpendicular to vec b non to vec c hence show that (vec p xx vec a+([vec a vec b vec c])/(vec a*vec c) vec c) is perpendicular vec b-vec c.

Let vec a,vec b, and vec c are vectors such that |vec a|=3,|vec b|=4 and |vec c|=5, and (vec a+vec b) is perpendicular to vec c,(vec b+vec c) is perpendicular to vec a and (vec c+vec a) is perpendicular to vec b. Then find the value of |vec a+vec b+vec c|

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

"If [[vec a+vec b,vec b+vec c,vec c+vec a]]=8 then the value of [(vec a timesvec b)(vec b timesvec c)(vec c timesvec a)]^(2)/(|[vec a*vec a,vec a*vec b,vec a*vec c],[vec b*vec a,vec b*vec b,vec b*vec c],[vec c*vec a,vec c*vec b,vec c*vec c]|)=lambda

For any three non-zero vectors vec a, vec b and vec c if | (vec a xxvec b) * vec c | = | vec a || vec b || vec c | then vec a * vec b + vec b * vec c + vec c * vec a =

If vec a,vec b and vec c are three mutually perpendicular vectors,then the vector which is equally inclined to these vectors is a.vec a+vec b+vec c b.(vec a)/(|vec a|)+(vec b)/(|vec b|)+(vec c)/(|vec c|) c.(vec a)/(|vec a|^(2))+(vec b)/(|vec b|^(2))+(vec c)/(|vec c|^(2))d|vec a|vec a-|vec b|vec b+|vec c|vec c

Show that the vectors vec a,vec b and vec c are coplanar if vec a+vec b,vec b+vec c and vec c+vec a are coplanar.

Show that the vectors vec a,vec b and vec c are coplanar if vec a+vec b,vec b+vec c and vec c+vec a are coplanar.

If vec a, vec b, vec c are three non-coplanar vectors represented by concurrent edges of a parallelopiped of volume 4, (vec a + vec b) + (vec bxx vec c) + (vec b + vec c). ( vec c xx vec a) + (vec c + vec a). (vec axx vec b) is equal to