Home
Class 10
MATHS
Prove (sin^3theta+cos^3theta)/(sintheta+...

Prove `(sin^3theta+cos^3theta)/(sintheta+costheta)=1-sinthetacostheta`

Promotional Banner

Similar Questions

Explore conceptually related problems

(sin3theta-cos3theta)/(sintheta+costheta)+1 =

The value of (sin^3theta+cos^3theta)/(sintheta+costheta) +sin theta cos theta is:

Prove that : (sintheta-costheta)/(sintheta+costheta)+(sintheta+costheta)/(sintheta-costheta)=(2)/(2sin^(2)theta-1)

prove that- (sinthetacos^3theta+sin^3thetacostheta)/(sinthetacostheta)=1

costheta-cos2theta=sin3theta

If : (sintheta+costheta)(1-sintheta*costheta)=sin^(n)theta+cos^(n)theta,"then" : n =

Prove that : (cos^(2)theta)/(1-tantheta)+(sin^(3)theta)/(sintheta-costheta)=1+sinthetacostheta

(sin^(3)theta+cos^(3)theta)/(sintheta+costheta)+(sin^(3)theta-cos^(3)theta)/(sintheta-costheta)=

(sintheta+sin2theta)/(1+costheta+cos2theta) =

(sintheta+sin2theta)/(1+costheta+cos2theta)=?