Home
Class 10
MATHS
Prove that (1+tanA)^2-sec^2A)cotA=2...

Prove that `(1+tanA)^2-sec^2A)cotA=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (tanA+cotA)^(2)=sec^(2)A+"cosec"^(2)A

Prove that : (1-tanA)^(2)+(1-cotA)^(2)=(secA-"cosec"A)^(2)

Prove that: (1-tanA)^(2)+(1-cotA)^(2)=(secA-"cosec"A)^(2)

Prove that (1+secA+tanA)(1-cosecA+cotA)=2

Prove that : (cotA-1)/(2-sec^(2)A)=(cotA)/(1+tanA)

Prove that (tanA)/((1-cotA))+(cotA)/((1-tanA))=(1+tanA+cotA).

Prove that : (tanA)/(1-cotA)+(cotA)/(1-tanA)=1+secA" cosec"A

Prove that: tanA(1+sec2A)=tan2A

Prove that: sinA(1+tanA)+cosA(1+cotA)= secA+"cosec"A

Prove that : (secA-tanA)/(secA+tanA)=1-2secAtanA+2tan^(2)A