Home
Class 12
MATHS
If cos X=a/b, then sin X is equal to: (...

If `cos X=a/b`, then sin X is equal to:
(a)`(b^2-a^2)/b` (b)`(b-a)/b` (c)`sqrt((b^2-a^2)/b)` (d)`sqrt((b-a)/b)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a sin x+b cos(x+theta)+b cos(x-theta)=d then the minimum value of |cos theta| is equal to (a) (1)/(2|b|)sqrt(d^(2)-a^(2))( b )(1)/(2|a|)sqrt(d^(2)-a^(2))(c)(1)/(2|d|)sqrt(d^(2)-a^(2))(d) none of these

If tan theta=(a)/(b), then b cos2 theta+a sin2 theta is equal to (a)a(b)b(c)(a)/(b)(d)(b)/(a)

If tan theta=(a)/(b), then (a sin theta+b cos theta)/(a sin theta-b cos theta) is equal to (a^(2)+b^(2))/(a^(2)-b^(2))(b)(a^(2)-b^(2))/(a^(2)+b^(2))(c)(a+b)/(a-b)(d)(a-b)/(a+b)

If x_(1) and x_(2) are two distinct roots of the equation a cos x+b sin x=c, then tan((x_(1)+x_(2))/(2)) is equal to (a)(a)/(b) (b) (b)/(a) (c) (c)/(a) (d) (a)/(c)

Distance of the points (a,b,c) for the y axis is (a) sqrt(b^(2)+c^(2)) (b) sqrt(c^(2)+a^(2)) (c )sqrt(a^(2)+b^(2)) (d) sqrt(a^(2)+b^(2)+c^(2))

[tan {(pi) / (4) + (1) / (2) sin ^ (- 1) ((a) / (b))} + tan {(pi) / (4) - (1) / ( 2) sin ^ (- 1) ((a) / (b))} ^ (- 1) where (0

If a cos theta-b sin theta=c, then a sin theta+b cos theta=+-sqrt(a^(2)+b^(2)+c^(2))(b)+-sqrt(a^(2)+b^(2)-c^(2))(c)+-sqrt(c^(2)-a^(2)-b^(2))(d) None of these

If : a * cos A-b * sin A=c, "then" : a * sin A +b* cos A= A) sqrt(a^(2)+b^(2)-c^(2)) B) sqrt(a^(2)-b^(2)+c^(2)) C) sqrt(b^(2)+c^(2)-a^(2)) D) sqrt(b^(2)+c^(2)+a^(2))

If sin^(-1)((2a)/(1+a^2))+sin^(-1)((2b)/(1+b^2))=2tan^(-1)x , then x is equal to [a , b , in (0,1)] (a)(a-b)/(1+a b) (b) b/(1+a b) (c) b/(1+a b) (d) (a+b)/(1-a b)