Home
Class 12
PHYSICS
An object has a velocity, v = (2hati + 4...

An object has a velocity, `v = (2hati + 4hatj) ms^(-1)` at time `t = 0s`. It undergoes a constant acceleration `a = (hati - 3hatj)ms^(-2)` for 4s. Then
(i) Find the coordinates of the object if it is at origin at `t = 0`
(ii) Find the magnitude of its velocity at the end of 4s.

Promotional Banner

Similar Questions

Explore conceptually related problems

A particle's velocity changes from (2hat I +3 hatj) ms^(-1) in to (3 hati - 2hatj) ms^(-1) in 2s. Its average acceleration in ms^(-2) is

The velocity of an object at t =0 is vecv_(0) =- 4 hatj m/s . It moves in plane with constant acceleration veca = ( 3hati + 8 hatj) m//s^(2) . What is its velocity after 1 s?

Velocity of a particle at time t=0 is 2ms^(-1) . A constant acceleration of 2ms^(-2) acts on the particle for 1 second at an angle of 60^(@) with its initial velocity. Find the magnitude of velocity at the end of 1 second .

A particle starts from the origin at t= 0 s with a velocity of 10.0 hatj m//s and moves in the xy -plane with a constant acceleration of (8hati+2hatj)m//s^(-2) . Then y -coordinate of the particle in 2 sec is

A particle velocity changes from (2 hati - 3hatj) ms^(-1) to (3hati - 2hatj) ms^(-1) in 2s. If its mass is 1kg, the acceleraton (ms^(-2)) is

A particle starts from the origin at t=Os with a velocity of 10.0 hatj m//s and moves in the xy -plane with a constant acceleration of (8hati+2hatj)m//s^(-2) . What time is the x -coordinate of the particle 16m ?

A particle starts from origin at t = 0 with a velocity of 15 hati ms^(-1) and moves in xy-plane under the action of a force which produces a constant acceleration of 15 hati + 20 hatj ms^(-2) . Find the y-coordinate of the particle at the instant its x-coordinate is 180 m.

An object has velocity vec v = (i+2hatj+3hatk)m//s . A constant acceleration of the object for which its speed starts decreasing is:

A particle P is at the origin starts with velocity u=(2hati-4hatj)m//s with constant acceleration (3hati+5hatj)m//s^(2) . After travelling for 2s its distance from the origin is