Home
Class 12
MATHS
The constant term in the expansion of (l...

The constant term in the expansion of `(log_(10)(x^(log_(10)x))-log_(x^(2))100)^(12)` is:

A

495

B

924

C

1050

D

5050

Text Solution

AI Generated Solution

The correct Answer is:
To find the constant term in the expansion of \( \left( \log_{10}(x^{\log_{10} x}) - \log_{x^2} 100 \right)^{12} \), we will follow these steps: ### Step 1: Simplify the logarithmic expressions 1. **First term**: \[ \log_{10}(x^{\log_{10} x}) = \log_{10} x \cdot \log_{10} x = (\log_{10} x)^2 \] 2. **Second term**: \[ \log_{x^2} 100 = \frac{\log_{10} 100}{\log_{10} (x^2)} = \frac{2}{2 \log_{10} x} = \frac{1}{\log_{10} x} \] Now, we can rewrite the expression inside the parentheses: \[ \log_{10}(x^{\log_{10} x}) - \log_{x^2} 100 = (\log_{10} x)^2 - \frac{1}{\log_{10} x} \] ### Step 2: Combine the terms Now, we can express the entire expression as: \[ \left( (\log_{10} x)^2 - \frac{1}{\log_{10} x} \right)^{12} \] ### Step 3: General term in the binomial expansion Let \( y = \log_{10} x \). The expression becomes: \[ \left( y^2 - \frac{1}{y} \right)^{12} \] Using the binomial theorem, the general term \( T_r \) in the expansion is given by: \[ T_r = \binom{12}{r} (y^2)^{12-r} \left(-\frac{1}{y}\right)^r = \binom{12}{r} (-1)^r y^{24 - r} \] ### Step 4: Find the constant term To find the constant term, we need the exponent of \( y \) to be zero: \[ 24 - r = 0 \implies r = 24 \] However, since \( r \) can only take values from 0 to 12, we need to adjust our approach. We will instead set: \[ 24 - 3r = 0 \implies 3r = 24 \implies r = 8 \] ### Step 5: Calculate the constant term Now, substituting \( r = 8 \) into the general term: \[ T_8 = \binom{12}{8} (-1)^8 y^{24 - 3 \cdot 8} = \binom{12}{8} y^{0} = \binom{12}{8} \] Calculating \( \binom{12}{8} \): \[ \binom{12}{8} = \binom{12}{4} = \frac{12 \times 11 \times 10 \times 9}{4 \times 3 \times 2 \times 1} = \frac{11880}{24} = 495 \] ### Final Answer Thus, the constant term in the expansion is \( \boxed{495} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The constant term in the expansion of (x+log_(e)(1-x))/(x^(3)) is

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1

Find the domain of the function f(x)=log_(10)((log_(10)x^(2))-5log_(10)x+6)

Find the domain f(x)=log_(100x)((2log_(10)x+1)/(-x))

log_(10)^(x)-log_(10)sqrt(x)=2log_(x)10. Find x

The value of x, for which the ninth term in the expansion of {sqrt(10)/((sqrt(x))^(5log _(10)x ))+ x.x^(1/(2log_(10)x))}^(10) is 450 is equal to

(log_(10)100x)^(2)+(log_(10)10x)^(2)+log_(10)x<=14

If the third term in the expansion of ((1)/(x)+_(x)log_(10x))^(5) is 1000, then find x