Home
Class 12
MATHS
If the function f(x)={(ax+b",",-oo lt x...

If the function `f(x)={(ax+b",",-oo lt x le2),(x^(2)-5x+6",", 2lt x lt 3),(px^(2)+qx+1",",3 le x lt oo):}` is differentiable in `(-oo, oo)`, then:

A

`a=-1, p= -(4)/(9)`

B

`b=2, q= (5)/(3)`

C

`a=1, b=2`

D

`a=-1, q= -(5)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( a \), \( b \), \( p \), and \( q \) such that the function \( f(x) \) is differentiable over the entire real line, we need to ensure that the function is continuous and that its derivatives match at the points where the piecewise definitions change, specifically at \( x = 2 \) and \( x = 3 \). ### Step 1: Ensure continuity at \( x = 2 \) The function is defined as: - \( f(x) = ax + b \) for \( -\infty < x \leq 2 \) - \( f(x) = x^2 - 5x + 6 \) for \( 2 < x < 3 \) To ensure continuity at \( x = 2 \), we set the left-hand limit equal to the right-hand limit: \[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) \] Calculating the left-hand limit: \[ \lim_{x \to 2^-} f(x) = a(2) + b = 2a + b \] Calculating the right-hand limit: \[ \lim_{x \to 2^+} f(x) = 2^2 - 5(2) + 6 = 4 - 10 + 6 = 0 \] Setting these equal gives us: \[ 2a + b = 0 \quad \text{(1)} \] ### Step 2: Ensure continuity at \( x = 3 \) Next, we check continuity at \( x = 3 \): - \( f(x) = x^2 - 5x + 6 \) for \( 2 < x < 3 \) - \( f(x) = px^2 + qx + 1 \) for \( 3 \leq x < \infty \) Setting the left-hand limit equal to the right-hand limit: \[ \lim_{x \to 3^-} f(x) = \lim_{x \to 3^+} f(x) \] Calculating the left-hand limit: \[ \lim_{x \to 3^-} f(x) = 3^2 - 5(3) + 6 = 9 - 15 + 6 = 0 \] Calculating the right-hand limit: \[ \lim_{x \to 3^+} f(x) = p(3^2) + q(3) + 1 = 9p + 3q + 1 \] Setting these equal gives us: \[ 9p + 3q + 1 = 0 \quad \text{(2)} \] ### Step 3: Ensure differentiability at \( x = 2 \) Next, we check the derivatives at \( x = 2 \): \[ f'(x) = a \quad \text{for } -\infty < x < 2 \] \[ f'(x) = 2x - 5 \quad \text{for } 2 < x < 3 \] Setting the derivatives equal at \( x = 2 \): \[ a = 2(2) - 5 = 4 - 5 = -1 \quad \text{(3)} \] ### Step 4: Ensure differentiability at \( x = 3 \) Now we check the derivatives at \( x = 3 \): \[ f'(x) = 2x - 5 \quad \text{for } 2 < x < 3 \] \[ f'(x) = 2px + q \quad \text{for } 3 \leq x < \infty \] Setting the derivatives equal at \( x = 3 \): \[ 2(3) - 5 = 2p(3) + q \] \[ 6 - 5 = 6p + q \quad \Rightarrow \quad 1 = 6p + q \quad \text{(4)} \] ### Step 5: Solve the equations Now we have the following equations to solve: 1. \( 2a + b = 0 \) 2. \( 9p + 3q + 1 = 0 \) 3. \( a = -1 \) 4. \( 6p + q = 1 \) Substituting \( a = -1 \) into equation (1): \[ 2(-1) + b = 0 \quad \Rightarrow \quad -2 + b = 0 \quad \Rightarrow \quad b = 2 \] Now substituting \( p \) and \( q \) into equations (2) and (4): From equation (4): \[ q = 1 - 6p \] Substituting into equation (2): \[ 9p + 3(1 - 6p) + 1 = 0 \] \[ 9p + 3 - 18p + 1 = 0 \] \[ -9p + 4 = 0 \quad \Rightarrow \quad 9p = 4 \quad \Rightarrow \quad p = \frac{4}{9} \] Now substituting \( p \) back to find \( q \): \[ q = 1 - 6\left(\frac{4}{9}\right) = 1 - \frac{24}{9} = 1 - \frac{8}{3} = \frac{3}{3} - \frac{8}{3} = -\frac{5}{3} \] ### Final Values Thus, we have: - \( a = -1 \) - \( b = 2 \) - \( p = \frac{4}{9} \) - \( q = -\frac{5}{3} \)
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)= {(5x-4 ", " 0 lt x le 1 ),( 4x^3-3x", " 1 lt x lt 2):}

If f(x) ={(4-3x,",",0 lt x le 2),(2x-6,",",2 lt x le 3),(x+5,",",3 lt x le 6):} , then f(x) is

If the function f(x) = {(1+(sin)(pi x)/2,",","for"-oo lt x le 1),(ax+b, ",","for" 1 lt x lt 3),(6(tan)(pi x)/12,",","for"3 le x lt 6):} is continuous in the interval (-oo, 6) , then the value of a and b are respectively

Function f(x)={{:(2x-1", if "x le 1 ),(x^(2)", if "1 lt x ),(3x - 4 " , if " 2 lt x lt 4 ):} is continuous on

Find the inverse of each of the following functions : f(x) = {{:(x"," -oo lt x lt 1),(x^(2)"," 1 le x le 4),(2x"," 4 lt x lt oo):}

If f(x)={:{(x^(2)-4", for " 0 le x le 2),(2x+3", for " 2 lt x le 4),(x^(2)-5", for " 4 lt x le 6):} , then

If the function f(x) = {(5x-4, ",","if"0 lt x le 1),(4x^(2)+3bx, ",", "if"1 lt x le 2 ):} is continuous at every point of its domain, then the value of b is