Home
Class 12
MATHS
If 1+x^(4)-x^(5)=sum(i=0)^(5)a(i)(1+x)^(...

If `1+x^(4)-x^(5)=sum_(i=0)^(5)a_(i)(1+x)^(i)` for all `x""inR`, then `a_(2)` is equal to ________

Text Solution

Verified by Experts

The correct Answer is:
16
Promotional Banner

Similar Questions

Explore conceptually related problems

If 1+x^(4)+x^(5)=sum_(i=0)^(5)a_(i)(1+x)^(i), for all x in R, then a_(2) is :

For x in R, x ne -1 , if (1 + x)^(2016) = sum_(i = 0)^(2016) a_(i)x^(i) , then a_(17) is equal to :

FOr xi nr,x!=-1, If (1+x)^(2016)+x(1+x)^(215)+x^(2)(1+x)^(2014)++x^(2016)=sum_(i=0)^(2016)a_(i)x^(i), then a_(17) is equal to -

If f(x)=sum_(k=0)^(n)a_(k)|x-1|^(k), where a_(i)in R, then

Let (x+10)^(50)+(x-10)^(50)=a_(0)+a_(1)x+a_(2)x^(2)+...+a_(50)x^(50) for all x in R , then (a_(2))/(a_(0)) is equal to

Let (x + 10)^(50) + (x - 10)^(50) = a_(0) + a_(1) x + a_(2)X^(2) + ….. + a_(50) x^(50) , for all x in R , then (a_(2))/(a_(0)) is equal to

If (1+x+x^(2))^(8)=a_(0)+a_(1)x+a_(2)x^(2)+…a_(16)x^(16) for all values of x, then (a_(5))/(100) is equal to

(1+x+x^(2)+x^(3))^(5)=a_(0)+a_(1)x+a_(2)x^(2)+....+a_(15)x^(15), then a_(10) equals to

(1+x-2x^(2))^(6)=sum_(r=0)^(12)a_(r)x^(r) then a_(2)+a_(4)+....+a_(12)=